Extensions 1→N→G→Q→1 with N=D10 and Q=C42

Direct product G=NxQ with N=D10 and Q=C42
dρLabelID
D5xC2xC42160D5xC2xC4^2320,1143

Semidirect products G=N:Q with N=D10 and Q=C42
extensionφ:Q→Out NdρLabelID
D10:C42 = C22:C4xF5φ: C42/C22C22 ⊆ Out D1040D10:C4^2320,1036
D10:2C42 = D10:2C42φ: C42/C2xC4C2 ⊆ Out D10160D10:2C4^2320,293
D10:3C42 = C4xD10:C4φ: C42/C2xC4C2 ⊆ Out D10160D10:3C4^2320,565
D10:4C42 = C4xC22:F5φ: C42/C2xC4C2 ⊆ Out D1080D10:4C4^2320,1101
D10:5C42 = C22xC4xF5φ: C42/C2xC4C2 ⊆ Out D1080D10:5C4^2320,1590

Non-split extensions G=N.Q with N=D10 and Q=C42
extensionφ:Q→Out NdρLabelID
D10.1C42 = D10.C42φ: C42/C22C22 ⊆ Out D10160D10.1C4^2320,1039
D10.2C42 = M4(2)xF5φ: C42/C22C22 ⊆ Out D10408D10.2C4^2320,1064
D10.3C42 = M4(2):5F5φ: C42/C22C22 ⊆ Out D10808D10.3C4^2320,1066
D10.4C42 = C4xC8:D5φ: C42/C2xC4C2 ⊆ Out D10160D10.4C4^2320,314
D10.5C42 = D10.5C42φ: C42/C2xC4C2 ⊆ Out D10160D10.5C4^2320,316
D10.6C42 = D10.6C42φ: C42/C2xC4C2 ⊆ Out D10160D10.6C4^2320,334
D10.7C42 = D10.7C42φ: C42/C2xC4C2 ⊆ Out D10160D10.7C4^2320,335
D10.8C42 = C4xD5:C8φ: C42/C2xC4C2 ⊆ Out D10160D10.8C4^2320,1013
D10.9C42 = C42.5F5φ: C42/C2xC4C2 ⊆ Out D10160D10.9C4^2320,1014
D10.10C42 = C4xC4.F5φ: C42/C2xC4C2 ⊆ Out D10160D10.10C4^2320,1015
D10.11C42 = C2xC8xF5φ: C42/C2xC4C2 ⊆ Out D1080D10.11C4^2320,1054
D10.12C42 = C2xC8:F5φ: C42/C2xC4C2 ⊆ Out D1080D10.12C4^2320,1055
D10.13C42 = C20.12C42φ: C42/C2xC4C2 ⊆ Out D10804D10.13C4^2320,1056
D10.14C42 = C2xD10.3Q8φ: C42/C2xC4C2 ⊆ Out D1080D10.14C4^2320,1100
D10.15C42 = D5xC2.C42φ: trivial image160D10.15C4^2320,290
D10.16C42 = D5xC4xC8φ: trivial image160D10.16C4^2320,311
D10.17C42 = D5xC8:C4φ: trivial image160D10.17C4^2320,331

׿
x
:
Z
F
o
wr
Q
<